双缝干涉延迟实验到底验证了什么,为什么说它的实验结果很恐怖?

查看全文
钥,但通信双方又不能天天见面接头,否则还要加密通信干什么? 然而,在不计成本的最高级别通信场合下,「一次一密」还真的用上了。 比如先编写一部超级长的密码本,派特工直接交到对方手里,然后双方就可以暂时安全通信了。 仅仅是暂时。 密码本用完之后,特工又得出动再送一本新的……(007:你以为我是快递小哥吗?) 就这样,我们研究了 75 年的密码学,什么对称加密、非对称加密(RSA)和黑客们展开了无数次「道高一尺魔高一丈」的攻防大战…… 直到我们遇见了香农 75 年前预言的密码学终极形态:无条件安全的量子通信。75 年前没有人能想到,那些「看上去几乎不可能实现」的三大要求,简直就是为量子通信量身定做的。 就拿最简单的量子通信协议——孪生粒子的量子纠缠来举个例子: 随机密钥:服务器生成一对孪生粒子 A 和 B,分别发送给通信双方。注意,A、B 被观测后的自旋状态是完全随机的,不要说敌人,就连自己人都看不出规律来!。 2.明密等长:要发送的「正正反反」是明文编码,量子通信随机产生的「反正反正」相当于密钥,微信发送的纠错码「错对对错」是加密后的传送内容。此时,正文、密钥、纠错码,三者的长度完全相同。 一次一密:为了发送 4 个比特的明文编码「正正反反」,服务器总共生成了 4 次随机密钥,每次传输 1 比特明文,都有 1 比特密钥保驾护航。 此时,破解的可能性,不是万分之一,也不是亿万分之一,就是 0。而且,最令人不可思议的是,量子通信不仅无法破解,还自带反窃听属性。就算敌人截获了每一次密钥,同时拿到了「正正反反」「反正反正」「错对对错」三条信息,量子通信仍然是安全的! 下面,就是见证奇迹的时刻。 反窃听,掌握主动权​ 量子通信为啥能反窃听? 因为量子世界三大定律之一:测不准原理。 如果敌人想要截获量子密钥,必须先截获 A、B 两个纠缠态粒子,然后测一下自旋态。 问题就出在这里。 量子态不是先天决定的,而是被你的测量决定的:你测了,它就从魔法般的量子纠缠态,变成平淡无奇的确定态了。 还记得前面提到的工程师贝尔吗? 他发明的「贝尔不等式」原理,就是用来检测纠缠态粒子之间是否存在「超距作用」。 当被敌人测过的 A、B 粒子到达我们的同志手中,他们只要做一件事,就能看出量子密钥是否被动过手脚:用阿斯派克特实验验证贝尔不等式——如果发现 A、B 之间的超距作用已然消失,只能说明一件事:在我方测量之前,已经有人测过了。 虽然在原理上,通过验证贝尔不等式已经足以确保信道的安全,然而在实际应用中,做阿斯派克特